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Abstract

The past few years have seen a significant change in the roles and requirements of the
U.S. Air Force. On one hand, the well defined global threat posed by a few conventional and
nuclear forces has been replaced by multiple, localized potential threats that in addition to the
usual conventional and nuclear ones, also potentially involve chemical and biological weapons.
In addition, the USAF role has expanded to include operations other than warfare, such as
peacekeeping and humanitarian aid. Finally, limited resources mandate that these roles must be
achieved in a cost-effective way.

This scenario translates into a requirement for highly versatile systems, capable of deliver-
ing near optimal performance under a wide range of conditions. In this research we have de-
veloped a framework, based on the combination of Receding Horizon, Control Lyapunov Func-
tions and Operator Interpolation Theory techniques, for systematically designing controllers
capable of meeting these challenges. These controllers offer the following advantages over
hitherto available design methods:

e The ability to deliver near optimal performance while keeping the computatlonal com-
plexity compatible with an on-line implementation.

e The ability to systematically trade—off computational power versus performance.

o The ability to explicitly address the issue of multiple performance specifications and
model uncertainty, identifying the limits of performance of the plant and making unavoid-
able design tradeoffs clear.

These advantages were validated in the problems of (a) control of thrust-vectored aircrafts,
and (b) vision—based tracking of non-cooperative targets. A description of the experiments and
several demos can be found at http: //robustsystems.ee.psu.edu.

Finally, in addition to contributing to the specific mission of the USAF, the framework
developed here also benefits society at large. The new controllers can result in substantially re-
duced operating costs in a large number of applications including commercial aircrafts, process
control and internet traffic control. In addition, when combined with computer vision, the re-
sulting robust dynamic vision systems can be used to increase security in sensitive areas, allow
elderly people to continue living independently and monitor and even coordinate responses to
environmental threats to minimize their effect.




Contents

1 Description of the Research Effort
L1 Objectives: . . . . . . ittt e e e e e e e e e e e e e
12 Benefitstothe USAirForce . . ... . ... ... ...ttt

23 Applications: . . .. .. .. ... e
3 Personnel Supported:
4 Imteraction with AFRL

5 Publications:




1 Description of the Research Effort

1.1 Objectives:

The objective of this research effort was to develop a simple synthesis framework for nonlinear systems that
explicitly takes into account multiple performance specifications, hard constraints, and model uncertainty.
In this context, the following tasks were accomplished:

o Development of computationally tractable synthesis methods for nonlinear and parameter varying systems
that lead to physically implementable controllers.

e Development of robust identification and model (in)validation techniques well matched to these control
methods.

o Application of the resulting theory to the problems of (i) controller design for thrust vectored aircrafts
and (ii) robust visual tracking of noncooperative targets.

Several video clips illustrating these results can be foundathttp: //robustsystems.ee.psu.edu.

1.2 Benefits to the US Air Force

In order to successfully handle threats arising in the next decades, the Air Force will increasingly rely on
a digitized battlefield, where highly versatile intelligent systems such as uninhabited combat and recon-
naissance air vehicles (UCAVs and URAVs) are key players. These aircraft will be required to serve in
multiple roles, across a spectrum of scenarios, often far away from their bases and in uncertain, adversarial
environments.

In order to meet these objectives, future control systems will be required to deliver near—optimal perfor-
mance operating under a wide range of conditions. Thus, these controllers will necessarily have to deal with
the nonlinear features of the plant, arising for instance, from the nonlinear dependence of the aerodynamic
coefficients on the angle of attack and Mach number, or the use of nonlinear sensors such as computer vision.
However, in contrast to the case of linear systems where several optimal synthesis techniques (such as Hc,
Ho and £) are well established, their nonlinear counterparts are just starting to emerge. Moreover, recent
counterexamples illustrate the fact that the resulting closed-loop performance is highly problem dependent.

This research has taken steps towards removing these limitations by developing a new class of near-
optimal controllers for control-affine nonlinear systems These controllers offer the following advantages
over hitherto available design methods: "

e The ability to deliver near optimal performance while keeping the computational complexity compat-
ible with an on-line implementation.

e A design paradigm that can systematically trade—off computational power versus performance.

e The ability to explicitly address the issue of multiple performance specifications and model uncer-
tainty, identifying the limits of performance of the plant and making unavoidable design tradeoffs

clear.

These advantages were experimentally validated in the problem of vision-based tracking of non—cooperative
targets. Controlled dynamic vision is now positioned in an optimal situation to address the challenges arising
in the context of endowing UCAVs and URAVs with the capabilities required to serve across a wide spec-
trum of missions, provided that adequate robustness can be incorporated into the resulting systems to allow
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for successful operation in highly uncertain scenarios. Proof-of-concept experimental systems developed
under this grant show that this can be accomplished by exploiting the control techniques developed here.

1.3 Bencﬁts to the Public:

The controllers developed under this grant have the potential to deliver near optimal performance under a
wide range of conditions. Thus, they can result in substantially reduced operating costs in a large number of
applications including commercial aircrafts, process control and internet traffic control. In addition, when
combined with computer vision, the resulting robust dynamic vision systems can be used to increase security
in sensitive areas, allow elderly people to continue living independently and monitor and even coordinate
responses to environmental threats to minimize their effect.

2 Technical Results

2.1 Summary of the results

This research was carried out using a combination of Control Lyapunov Functions, Receding Horizon and
Interpolation Theory tools. This combination led to the following results:

Theoretical:

) Co:ﬁbination of Control Lyaplmox'l Functions (CLF) and Receding Horizon techniques to obtain con-
trollers guaranteed to outperform those obtained using CLF methods alone [2,10,17,20,24] .

o Development of a robust H; control framework for constrained systems [3,4,8,9].

e Development of Control Oriented Identification and Model (In)validation methods for parameter—varying,
not necessarily £, stable systems [6,11,12,16].

o Development of risk—adjusted robust control methods for arbitrary uncertainty structures [13,15,25,42].
Applications:

e Validation of the theoretical framework in the problems of control of a simplified thrust vectored aircraft
[2,17], visual tracking of uncooperative targets [7,14,18,21,29,33,37,39] and activity recognition [30].

2.2 Technical Details:

The technical details of the approach are summarized in the sequel. For the sake of brevity, only the key
points are listed here. Complete details can be found in the corresponding publications.

o Nonlinear Control via Receding Horizon Constrained Control Lyapunov Functions.
Consider the control affine nonlinear system:

| z = f(z) + g(z)u, u€ N, »

where the convex set ), represents hard constraints on the control action. The goal is to find a feedback

!These numbers are keyed to the publications list in section 5




control law u[z(t)] that minimizes the following performance index:

IH

J(zo, 1)

=3 0/ [z'Q(z)z + v/ R(z)u] dt, =(0) =z, , 2

It is well known that the problem above is equivalent to solving a Hamilton-Jacobi-Bellman partial differ-
ential equation. Unfortunately, the complexity of this equation prevents its solution except in some very
simple, low dimensional cases. To handle this difficulty, we have developed a controller based upon the
combination of Receding Horizon and CLF techniques [2,10,17]. The central idea of the approach is to
recast the nonlinear problem as the following equivalent finite-horizon opu'mization problem:

uy(t) = a:rgmm { JET (2'Qz + v/ Ru) dt + Uzt + T)]} 3)

where ¥/(.) is a Constrained Control Lyapunov Function (CCLF) for system (1) in the sense that it is radially
unbounded in z and

[BV
o/

When solved on-line this optimization problem leads to a Receding Horizon type control law with the
following properties:

1. It renders the origin an asymptotically stable equilibrium point of (1) in the entire region where the system
is stabilizable with a bounded control action.

2. Coincides with the globally optimal control law when ¥(z) = V(z), the actual (local) storage function.

3. Its suboptimality level decreases monotomca.lly along the tra_]ectones of the system (i.e it is guaranteed to
move the system in the “right direction”

inf

Jof flz)+ %g(x)u] <0, Yz #0 | @

o Construction of non—conservative CCLFs

In principle, a simple way of finding a CCLF is to find first a CLF using any of the methods available in the
literature, such as feedback linearization and backstepping and then considering an invariant set S. where
the associated control action does not exceed the bounds. However, this approach may require the use of
an impractically large horizon T in the optimization to guarantee that the set S, is reached. As part of this
research we have developed a method to generate CCLFs, based upon the combination of state dependent
coefficient representations (SDC) and state dependent scalings. An outline of this approach is given in the
sequel. Full details can be found in [10,17].

Begin by rewriting the nonlinear system (1) into the following lineartike form:
i = A(z)z + B(z)u &)

and assume that, for every z the pair [A(z), B(z)] is stabilizable (in the linear sense). Consider now the
following Riccati equation, parametric in = and 7:

0= A(2)P(z,7) + Pz, ))A(z) + ~Q(@) - P(z,7)B(2)B(2) P(a7) ©

and the associated control law:

u= —-B'P(z,7)z ‘ ™




where P(z, 7) is the positive definite solution of (6). Finally, given a compact domain D C R", consider
the mapping 7 : D — R* defined implicitly by the solution to the following equation:

a(t)'P(z, )z =1 : ) ®

where

Note that P(z) = P(.’D,‘ 1) is precisely the solution to the SDRE associated with the system (5) and hence
is a CLF in a neighborhood V of the origin. Let Syr C N be a controlled-invariant set with respect to the
control law?:

& = —B(z) P(z)z : (10
and define the sets:
£ = {:t:: ' P(z)z < ?-RITF} an
S1 = &N SN ‘

Theorem 1 Given a compabt region D C R™, assume that there exist some Tmaz > 1 such that 3
DC Srax {x:z’P(x,Tm)x < a(rm)'l}

I, for every fixed T € (1, Tmaz| the function ¢(z,7) = z'P(z, )z is a CLF with respect to the control
action u; = —B'P(z, )z, then

1.
_ ] 32Plz,7(x)lz z €SN/
¥(z) = { 37’Plz, 1)z T €S 12)
is a CCLF for (1) in the region D. .

o Control Oriented Identification and Model (In)Validation.

In parallel with the controller design effort, we extended the worst—case identification/model (in)validation
framework developed in the early to mid 1990’s to the case of Linear Parameter Varying, not necessarily
stable, plants. Our main result shows that in these cases generalized interpolation theory can be used to
recast the problem into an LMI form. The overall complexity of the resulting algorithm is similar to that
of identifying and validating LTI systems of comparable size. In addition we have extended these tech-
niques to the case where the plant is not necessarily open loop L3 stable. This is of particular importance
for applications such as visual tracking and activity recognition (see [11,12,39] for details). Finally, we
have obtained necessary and sufficient convex conditions for model invalidation in the presence of arbi-
trarily slowly time~varying structured uncertainty. Using these conditions entails a substantial complexity
conditions over currently available methods, since these are known to lead to NP-hard problems whose
computational complexity scales exponentially with the number of uncertainty blocks.

*Such a set can be constructed for instance by finding ¢ = inf ' P and defining Sy = {z:2'Pz < c}.
= "
3]t can be shown that if A(z) is pointwise Hurwitz then S.,,,.. = R".
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2.3 Applications:

The theoretical framework developed under this grant has been validated in the following applications:

(a) The Ducted Fan: Consider the planar ducted fan shown in Figure 1(a), (a simplified model of a thrust
vectored aircraft) with dynamics given by:

Z —gsinf %‘32 — ginf u
j|=|g(cosh—1) |+ |2t oot ] [u;] (13)
é 0o T 0 )

where z,y and @ denote horizontal, vertical and angular position respectively and where u; and ug are the
control inputs.

O , Method Cost
g LQR 1.1 x 10°
CLF 2.53 x 10%

LPV 1833

SDRE 1989

Optimal (off line) 1115

New 1117

Net Thrust

Figure 1: (a) Simplified model of a thrust vectored aircraft. (b) Performance of different controllers.

The goal is to minimize a performance index of the form (2) with:
Q=diag[5 5 1 1 1 5], R=DIx2

corresponding to the following choice of state variables: { =[z y 6 £ ¥ é]. Figure 1(b) shows the
performance achieved by several controllers, starting from the initial condition § (0)=[0 0 0 125 0 0]
Note that the proposed approach (RHCCLF) outperforms all other techniques, achieving a cost virtually
equal to the global optimum.

(b) Robast active tracking of non-cooperative targets in uncertain environments: Currently available
UAVs, equipped with appropriate sensors and decision capabilities, can carry out a wide spectrum of mis-
sions, including intelligence gathering, target search and identification, and activity analysis. All of these
applications require having robust active vision systems, capable of operating in adversarial, highly uncer-
tain environments, and endowed with the ability to (i) frack the target(s), (i) zoom in features of interest,
and (iii) recognize the actions being undertaken. As we briefly illustrate next, tools developed under this
grant can effectively accomplish this.

(i) Object Localization and Tracking: In principle, the location of the target can be predicted using a
combination of the target dynamics, empirically learned noise distributions and past position. However, this
process is far from trivial in a cluttered environment.

Figure 2 shows the results of using a Mean Shift based tracking (white crosses) implemented in Intel’s
Open Source Computer Vision Library. Although this algorithm is designed to improve tracking robustness
by exploiting color information, it begins to track poorly in frame 19, and by frame 21 it has completely lost

S




Frame 8 Frame 14 Frame 19 Frame 21
Figure 2: Robust identification based tracking (black cross) versus Mean Shift (white cross)

the target due to a combination of clutter and moderate occlusion. This difficulty can be solved by modelling
the motion of the target as the impulse response of an unknown non Schur plant, and using our theory to
identify the relevant dynamics. The advantage of this approach is illustrated in Figure 2, where the black
crosses indicate the position of the centroid predicted by our model. As shown there, the identified model
is able to correctly predict the location of the target, far beyond the point where the Mean Shift tracker has
failed. .

Frame 150 Frame 105 Frame 95 - Frame 85

Figure 3: Two examples of a combination Kalman and Operator based tracking in the presence of occlusion

Finally, as shown in Figure 3, the proposed approach can be used to substantially improve robusteness
of trackers, such as Kalman and Unscented Particle Filters, that rely on a combination of past measure-
ments and the dynamics of the target to estimate its future location. As shown there, this approach is able
to handle both casual (top) and malicious (bottom) occlusion. Moreover, this performance improvement is
achieved together with a substantial computational complexity reduction, since the combination Kalman-
Filter/Operator-based interpolator significantly outperforms an Unscented Particle Filter that requires con-
siderably more on—line computations.

(ii) Visual Servoing: Once the target has been localized, the next task that needs to be accomplished is to
hold the gaze at distinguished features of the target, by actively controlling the cameras and zooming into
features of interest. Our framework allows for robustly accomplishing this by using a combination of robust
identification and model (in)validation techniques to obtain an LPV model of the plant, and the associated
uncertainty description. In turn, these can be combined with the controller synthesis framework to obtain
a robust LPV controller. Figure 4 shows the results of an experiment where a non—cooperative target is




tracked while zooming in an out of its features. As shown in Figure 4(b) the controller achieves good
tracking performance, in spite of the substantial change in the dynamics of the system due to the zooming
action, and the presence of clutter.
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Figure 4: (a) A visual tracking system. (b) Target for different values of f. (c) Tracking error while zooming.

(iii) Activity Recognition: Once the target has been tracked for an adequate amount of time, the data
collected can be used to analyze its activity. We have shown that this problem can be solved by using
interpolation theory tools to recast it as the combined identification/model (in)validation of a marginally

stable system (see [30] for details).
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